Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Andre Lacroix x
Clear All Modify Search
Open access

Stéphanie Larose, Dany Rioux, Roula Albadine, and Andre Lacroix

Ectopic ACTH secretion (EAS) is a rare cause of ACTH-dependent Cushing’s syndrome (CS), most often caused by a thoracic neuroendocrine tumor (NET). Large-cell neuroendocrine carcinomas (LCNEC) with EAS are rare and usually present a more severe ACTH secretion and hypercortisolism. We report a 44-yo non-smoker man, who presented clinical and biochemical evidence of ACTH-dependent CS. Desmopressin 10 mcg iv produced a 157% increase in ACTH and a 25% increase in cortisol from baseline; there was no stimulation of ACTH or cortisol during the CRH test and no suppression with high dose dexamethasone. Pituitary MRI identified a 5 mm lesion, but inferior petrosal venous sinus sampling (IPSS) under desmopressin did not identify a central ACTH source. Thorax and abdominal imaging identified a left lung micronodule. Surgery confirmed a lung LCNEC with strongly positive ACTH immunohistochemistry (IHC) in the primary and lymph node metastasis The patient was in CS remission after surgery and adjuvant chemotherapy, but developed a recurrence 9.5 years later, with LCNEC pulmonary left hilar metastases, ectopic CS, and positive ACTH IHC. This is the first report of LCNEC, with morphologic feature of carcinoid tumor of the lung with ectopic ACTH stimulated by desmopressin. Long delay prior to metastatic recurrence indicates relatively indolent NET. This case report indicates that response to desmopressin, which usually occurs in Cushing’s disease or benign neuroendocrine tumors, can occur in malignant LCNEC.

Open access

Nada Younes, Isabelle Bourdeau, Harold Olney, Paul Perrotte, Odile Prosmanne, Mathieu Latour, David Roberge, and André Lacroix


Needle tract seeding is a potential, albeit rare, complication following transcutaneous biopsies, leading to the seeding of tumor cells along the path of the needle. Biopsies of adrenal masses are not routinely recommended and are only indicated, after exclusion of pheochromocytoma, when an adrenal metastasis of a primary extra-adrenal cancer is suspected or when pathological confirmation of inoperable adrenocortical cancer (ACC) may impact treatment. Despite guideline recommendations to avoid primary adrenal biopsy, very few needle tract seeding cases have been reported and none were in the context of an ACC. We report the occurrence of needle tract seeding in a patient following adrenal transcutaneous biopsy leading to ACC abdominal wall recurrence.

Learning points

  • Needle tract seeding is a rare complication of transcutaneous biopsy. It may increase morbidity and impact overall survival. It has yet to be documented in adrenocortical carcinoma (ACC).

  • Adrenal masses can be accurately evaluated for malignancy using a combination of conventional and metabolic imaging, such as CT and fluorodeoxyglucose-PET, obviating the need for biopsies.

  • Adrenal mass biopsy is not indicated in ACC unless advanced ACC is diagnosed, and a pathological confirmation would impact management.

Open access

Nadia Gagnon, Sophie Bernard, Martine Paquette, Catherine Alguire, André Lacroix, Pierre-Olivier Hétu, Harold J Olney, and Isabelle Bourdeau


This study examined the magnitude of changes and the time required to observe maximal changes in LDL-c, HDL-c, triglycerides (Tg) and non-HDL-c after the introduction of mitotane.


Retrospective study of 45 patients with adrenocortical carcinoma who were treated at the Centre hospitalier de l’Université de Montréal. Clinical and biochemical data were collected, including lipid profiles before and during the first year of treatment with mitotane.


Among the 45 studied patients, 26 (58%) had a complete lipid profile before the introduction of mitotane and at least 1 lipid profile during the first year of treatment, and 19 patients (42%) had a lipid profile following initiation of the treatment. Among the 26 patients who had lipid profiles before and after the introduction of mitotane, the increase of LDL-c was 2.19 mmol/L (76%) (P< 0.0001), HDL-c was 0.54 mmol/L (35%) (P= 0.0002), Tg was 1.80 mmol/L (129%) (P< 0.0001) and non-HDL-c was 2.73 mmol/L (79%) (P< 0.0001). Between the first and the sixth month of mitotane treatment, peak values (n  = 45) of LDL-c and non-HDL-c were reached in 42 patients (93%) and 37 patients (82%), respectively, whereas peak values of HDL-c were reached after 6 months of mitotane treatment in 29 patients (66%). The peak value of Tg was almost equal throughout the first year. The mean peak values of HDL-c, Tg and non-HDL-c showed significant associations with their respective mitotane concentrations (β = 0.352, P= 0.03; β = 0.406, P= 0.02 and β = 0.339, P= 0.05).


The introduction of mitotane produces a clinically significant elevation of lipid parameters (LDL-c, HDL-c, Tg and non-HDL-c) during the first year of treatment.